Principles of Scalable
Performance

We study performance measures, spéedup laws, and scafabiiity pnnaptes in this chapter. Three speedup
models are presented under different computing objectives and resource constraints. These include
Amdahl's law (1967), Gustafson’s. scajed speedup (1988) and the memcry-bounded speedup by.Sun and
Ni (1993).

The efficiency, redundancy utn!nzatmn, and qnahty of 2 paraﬁel computation are deﬁned, invoiwng the
interplay between architectures and aigorithms. Standard performanca measures and several benchmark
kernels are introduced with. relevant performance data. = -

The performance of parallel computers relies on a desagn that balances hardware and soa‘mre The
system architects and programmers must exploit parallelism, pipelining, and networking in a bajanced
approach. Toward building massively parallel systems, the scalability issues must be resolved first.
Fundamental concepts of scalable systems are mtroduced in this chapter. Case studles can be found in
subsequent chapters, especually in Chapters 9 and 13, I

In this section, we first study parallelism profiles and define the asymptotic speedup factor,
ignoring communication latency and resource limitations. Then we introduce the concepts of
system efficiency, utilization, redundancy, and quality of parallel computations. Possible tradeoffs among
these performance metrics are examined in the context of cost-effectiveness. Several commonly used
performance measures, MIPS, Mflops, and TPS, are formally defined.

3.1.1 Parallelism Profile in Programs

The degree of parallelism reflects the extent to which software parallelism matches hardware parallelism.
We characterize below parallelism profiles, introduce the concept of average parallelism, and define an
ideal speedup with infinite machine resources. Variations on the ideal speedup factor will be presented in
subsequent sections from various application viewpoints and under different system limitations.

Degree of Parallelism The execution of a program on a paraliel computer may use different numbers
of processors at different time periods during the execution cycle. For each time period, the number of
processors used to execute a program is defined as the degree of parallelism (DOP). This is a discrete time
function, assuming only nonnegative integer values.

g0 " Advanced Computer Architecture

The plot of the DOP as a function of time is called the parallelism profile of a given program. For
simplicity, we concentrate on the analysis of single-program profiles. Some software tools are available to
trace the parallelism profile. The profiling of multiple programs in an interleaved fashion can in theory be
extended from this study.

Fluctuation of the profile during an observation period depends on the algorithmic structure, program
optimization, resource utilization, and run-time conditions of a computer system. The DOP was defined
under the assumption of having an unbounded number of available processors and other necessary resources.
The DOP may not always be achievable on a real computer with limited resources.

When the DOP exceeds the maximum number of available processors in a system, some parallel branches
must be executed in chunks sequentiaily. However, parallelism still exists within each chunk, limited by the
machine size. The DOP may be also limited by memory and by other nonprocessor resources. We consider
only the limit imposed by processors in our discussions on speedup models.

Average Parallelism In what follows, we consider a parallel computer consisting of » homogeneous
processors. The maximum parallelism in a profile is . In the ideal case, n >> m. The computing capacity
A of a single processor is approximated by the execution rate, such as MIPS or Mflops, without considering
the penalties from memory access, communication latency, or system overhead. When i processors are busy
during an observation period, we have DOP =1.

The total amount of work W (instructions or computations) performed is proportional to the area under
the profile curve:

1.
W=Aj2 DOP(1) dt 3.1)
fi
This integral is often computed with the following discrete summation:

w=a Y it (3.2)
i=1

where ¢, is the total amount of time that DOP = iand LI # =1, -t is the total elapsed time.

The average parallelism A is computed by

f
A= —[" popq at (3.3)
12 - t]. !l

In discrete form, we have

A= ii-t,- Y (3.4)

i=1 i=1

L)

8—] Example 3.1 Parallelism profile and average parallelism
of a divide-and-conquer algorithm (Sun and
Ni, 1993)

As illustrated in Fig, 3.1, the parallelism profile of a divide-and-conquer algorithm increases from I to its
peak value m = 8 and then decreases to 0 during the observation period (7, 1,).

Principles of Scafable Performance .. 1

4 Degree of Parallelism
L (DOP)

Average parallelism A

- N w s > N o
T

2 4 7 10 13 1517 20 24 27

Time —=

Fig.3.1 Paralielism profile of a divide-and-conquer algorithm

In Fig. 3.1, the average parallelism A4 = (1 X5+2X3+3X4+4X6+5x2+6x2+8x3Y(5+3+4
+6+2+2+3)=193/25=3.72. In fact, the total workload W = AA (t;—1,), and A4 is an upper bound of the
asymptotic speedup to be defined below,

Available Parallelism There is a wide range of potential parallelism in application programs. Engineering
and scientific codes exhibit a high DOP due to data parallelism. Manoj Kumar (1988) has reported that
computation-intensive codes may execute 500 to 3500 arithmetic operations concurrently in each clock cycle
in an idealized environment. Nicolau and Fisher (1984) reported that standard Fortran programs averaged
about a factor of 90 parallelism available for very-long-instruction word architectures. These numbers show
the optimistic side of available parallelism.

However, David Wall (1991) indicated that limits of instruction-level parallelism is around 5, rarely
exceeding 7. Bulter et al. (1991) reported that when all constraints are removed, the DOP in programs
may exceed 17 instructions per .cycle. If the hardware is perfectly balanced, one can sustain from 2.0 to
3.8 instructions per cycle on a superscalar processor that is reasonably designed. These numbers show the
pessimistic side of available parallelism.

The above measures of available parallelism show that computation that is less numeric than that in
scientific codes has relatively little parallelism even when basic block boundaries are ignored. A basic block
is a sequence or block of instructions in a program that has a single entry and a single exit points. While
compiler optimization and algorithm redesign may increase the available parallelism in an application,
limiting parailelism extraction to a basic block limits the potential instruction-level parallelism to a factor of
about 2 to 5 in ordinary programs. However, the DOP may be pushed to thousands in some scientific codes
when multiple processors are used to exploit parallelism beyond the boundary of basic blocks.

Asymptotic Speedup Denote the amount of work executed with DOP = i as W; = iAt; or we can write
W= Xl W, The execution time of W; on a single processor (sequentially) is 7,(1) = W/A. The execution
time of W, on k processors is £,(k) = W/kA. With an infinite number of available processors, t{eo) = W/iA for
1 =7 < m. Thus we can write the response time as

=3 (1)- i% (3.5)
i=1 i=l

92 il Advanced Computer Architecture

nt m W
T)= Xt (=)= Dt (3.6)
i=1 i=1

The asymptotic speedup S.. is defined as the ratio of T(1) to T(=2):
SRERAU RS . (G.7)

Comparing Eqgs. 3.4 and 3.7, we realize that S,, = 4 in the ideal case. In general, S.. £ A if communication
latency and other system overhead are considered. Note that both S.. and A are defined under the assumption
H=coOrn>>m

3.1.2 Mean Performance

Consider a parallel computer with » processors executing m programs in various modes with different
performance levels. We want to define the mean performance of such multimode computers. With a weight
distribution we can define a meaningful performance expression. _

Different execution modes may correspond to scalar, vector, sequential, or parallel processing with
different program parts. Each program may be executed with a combination of these modes. Harmonic mean
performance provides an average performance across a large number of programs running in various medes.

Before we derive the harmonic mean performance expression, let us study the arithmetic mean performance
expression first derived by James Smith (1988). The execution rate R, for program i is measured in MIPS rate
or Mflops rate, and so are the various performance expressions to be derived below.

Arithmetic Mean Performance Let {R;} be the execution rates of programs i = 1, 2,...., m. The arithmetic
mean execution rate is defined as

R,= Y Rim (3.8)
i=1

The expression R, assumes equal weighting (1/m) on all m programs. If the programs are weighted with a
distribution w= {f|i =1, 2, ..., m}, we define a weighted arithmetic mean execution rate as follows:

m
RE= D (fiR) (3.9)
i=1
Arithmetic mean execution rate is proportional to the sum of the inverses of execution times; it is not
inversely proportional to the sum of execution times. Consequently, the arithmetic mean execution rate fails
to represent the real times consumed by the benchmarks when they are actually executed.

Harmonic Mean Performance With the weakness of arithmetic mean performance measure, we need
to develop a mean performance expression based on arithmetic mean execution time. In fact, 7; = 1/R; is the
mean execution time per instruction for program i. The arithmetic mean execution time per instruction is
defined by

Principles of Scalable Performance L. o3

1+ 1o 1
Li=—)L =—)% — 3.10
i 2} — Z, X (3.10)
The harmonic mean execution rate across m benchmark programs is thus defined by the fact R, = /T,:
m
Ry= m— (3.1
2L (/R)
Therefore, the harmonic mean performance is indeed related to the average execution time. With a weight
distribution = {f|i= 1,2, ..., m}, we can define the weighted harmonic mean execution rate as:
1
s o
2L L/R)
The above harmonic mean performance expressions correspond to the total number of operations divided
by the total time. Compared to arithmetic mean, the harmonic mean execution rate is closer to the real
performance.

(3.12)

Harmonic Mean Speedup Another way to apply the harmonic mean concept is to tie the various modes
of a program to the number of processors used. Suppose a program (or a workload of multiple programs
combined) is to be executed on an n-processor system. During the executing period, the program may use
i=1,2, ..., nprocessors in different time periods.

We say the program is executed in mode i, if i processors are used. The corresponding execution rate R;is
used to reflect the collective speed of i processors. Assume that 7, = 1/R, = 1 is the sequential execution time
on a uniprocessor with an execution rate R| = 1. Then T, = 1/R; = /i is the execution time of using 7 processors
with a combined execution rate of R; = 7 in the ideal case.

Suppose the given program is executed in » execution modes with a weight distribution w = hli=1, 2,
.-y 1} A weighted harmonic mean speedup is defined as follows:

1
(XL fi/R,)
where T™* = 1/RY, is the weighted arithmetic mean execution time across the n execution modes, similar to
that derived in Eq. 3.12.

B

In Fig. 3.2, we plot Eq. 3.13 based on the assumption that T; =1/ forall i = 1, 2, ..., ». This corresponds to
the ideal case in which a unit-time job is done by i processors in minimum time. The assumption can also
be interpreted as R; = i because the execution rate increases 7 times from R, = | when i processors are fully
utilized without waste.

S=T/T*= (3.13)

Example 3.2 Harmonic mean speedup for a multipro-
cessor operating in n execution modes
(Hwang and Briggs, 1984)

The three probability distributions 7;, m;, and 7; correspond to three processor utilization patterns. Let

s= X1 m=(1/n, 1/n, .., 1/n) corresponds to a uniform distribution over the » execution modes, m=(1s,
2/s, ..., nis) favors using more processors, and 7; = (n/s,(n — 1Y/s, ...,2/s,1/5) favors using fewer processors.

94 "l

Advanced Computer Architecture

The ideal case corresponds to the 45° dashed line. Obviously, m produces a higher speedup than 7, does.
The distribution 7 is superior to the distribution 7y in Fig. 3.2.

e
1024 | 2 i _[1 2 .0
nls s s
)
Speedup 64 n3=§£,"_‘_1 l]
[& s/
18 | n
wheres= 3,/
nl i=1
1 |

4 16 64 256 1024 N

Fig. 3.2 Harmonic mean speedup pér_-formance_wi_rh 'rgspect-;o three probaﬁility distributions: 771 for uniform
distribution, 7 in favor of using more processors, and 7y in favor of using fewer processors

Amdahl’s Law Using Eq. 3.13, one can derive Amdahl’s law as follows: First, assume R; =i, w= (¢, 0,0, ...,
0,1-d)ie,w=ow,=l-aandw;=0fori=1 and i # n. This implies that the system is used either ina
pure sequential mode on one processor with a probability e, or in a fully parallel mode using » processors witha
probability 1 - ¢. Substituting R =1 and R, = # and w into Eq. 3.13, we obtain the following speedup expression:
n
5= 15 (n—De
This is known as Amdah1’s law. The implication is that § — 1/cxas n — . In other words, under the above
probability assumption, the best speedup one can expect is upper-bounded by 1/e, regardless of how many
processors are employed.
In Fig. 3.3, we plot Eq. 3.14 as a function of » for four values of ¢. When « = 0, the ideal speedup is
achieved. As the value of & increases from 0.01 to 0.1 to 0.9, the speedup performance drops sharply.

(3.14)

- n
“1+(n-No
1024 - /0a=0
ra
4
256 ,0'
,’ o=0.01
Speedup 64 Id
’
d,
8- / o=0.1
Z,
£
4 b
a=09
1 — 1

4 16 64 256 1024

Fig.3.3 Speedup performance with respect to the probability distribution 7= (2,0, ...,0,1 - @) where ais the
‘ fraction of sequential bottieneck : S :

Principles of Scalable Performance .. 95

For many years, Amdahl’s law has painted a pessimistic picture for parallel processing. That is, the system
performance cannot be high as fong as the serial fraction & exists. We will further examine Amdahl’s law in
Section 3.3.1 from the perspective of workload growth,

3.1.3 Efficiency, Utilization, and Quality

Ruby Lee (1980) has defined several parameters for evaluating parallel computations. These are fundamental
concepts in parallel processing. Tradeoffs among these performance factors are often encountered in real-life
applications.

System Efficiency Let O(n) be the total number of unit operations performed by an n-processor system and
T'(n) be the execution time in unit time steps. In general, T(n) < O(n) if more than one operation is performed
by » processors per unit time, where n > 2. Assume T (1)=0O(1) in a uniprocessor system. The speedup factor
is defined as

S(ny=T{1)/T(n) (3.15)

The system efficiency for an n-processor system is defined by
Emy= S0 _ TO) (3.16)

n nl(n)

Efficiency is an indication of the actual degree of speedup performance achieved as compared with the
maximum value. Since 1 < S(n) € n, we have 1/ < E(nmy<1.

The lowest efficiency corresponds to the case of the entire program code being executed sequentially
on a single processor, the other processors remaining idle. The maximum efficiency is achieved when all
processors are fully utilized throughout the execution period.

Redundancy and Utilization The redundancy in a parallel computation is defined as the ratio of n) to
o).
R(n) = 0@y O(1) (3.17)

This ratio signifies the extent of matching between software parallelism and hardware parallelism.
Obviously 1< R(n) < n. The system utilization in a parallel computation is defined as

O(n)
nT{n)
The system utilization indicates the percentage of resources (processors, memories, etc.) that was

kept busy during the execution of a parallel program. It is interesting to note the following relationships:
UVn<Emy<sUm)<land 1 <R(n) < lIVE(ry £ n.

U(n) = RU)E(n) = (3.18)

Quality of Parallelism The quality of a parallel computation is directly proportional to the speedup and
efficiency and inversely related to the redundancy. Thus, we have
S(MEMm _ T
R(n) nT4Hn)O(n)
Since E(n) is always a fraction and R(n) is a number between 1 and n, the quality ((n) is always upper-
bounded by the speedup S(n).

Qmy = (3.19)

T Advanced Computer Architecture

L)
‘8 Example 3.3 A hypothetical workload and performance
plots

In Fig. 3.4, we compare the relative magnitudes of S(r), E(n), R(n), Uln). and Q(n) as a function of machine
size n, with respect to a hypothetical workload characterized by O(1) = I{1} = 2, 0m=n + n*log,n, and
T(n) = 4n’/(n + 3).

Substituting these measures into Egs. 3.15 to 3.19, we obtain the following performance expressions:

Stny = (n+3)4

E{n) = (n + 3)/(4n)

R(n)y = (ntlogyn¥n

Uy = (n+3)n+log m(4n)
Q) = (n+ 3V N16(n + logy nY)

The relationships Un < E(n) € Ulm) < 1 and 0 < (n} = S(n)} < n are observed where the linear speedup
corresponds to the ideal case of 100% efficiency.

Speedup S(n)
Efficiency E(n) Redundancy R(n)
Utilization U(n) Quality Q(n)
3
1.0+ -+32
081 116
0.6 ~18
04+ —4
0.2F 42
0.0 11

1 2 4 8 16 32
Number of processors (n)

Fig.3.4 Performance measures for Example 3.3 on a parallel computer with up to 32 processors

To summarize the above discussion on performance indices, we use the speedup S(n) to indicate the
degree of speed gain in a parallel computation. The efficiency FE(n) measures the useful portion of the total
work performed by » processors. The redundancy R(n) measures the extent of workload increase.

The utilization U(n) indicates the extent to which resources are utilized during a parallel computation.

Principles of Scalable Performance . oy

Finally, the quality Q(n) combines the effects of speedup, efficiency, and redundancy into a single expression
to assess the relative merit of a parallel computation on a computer system.

The speedup and efficiency of 10 parallel computers are reported in Table 3.1 for solving a linear system
of 1000 equations. The table entries are excerpts from Table 2 in Dongarra’s report (1992) on LINPACK
benchmark performance over a large number of computers.

Either the standard LINPACK algorithm or an algorithm based on matrix-matrix multiplication was used
in these experiments. A high degree of parallelism is embedded in these experiments. Thus high efficiency
(such as 0.94 for the IBM 3090/6008 VF and 0.95 for the Convex (3240) was achieved. The low efficiency
reported on the Intel Delta was based on some initial data,

Table 3.1 Speedup and Efficiency of Parallel Computers for Solving a Linear System with 1000 Unknowns

Computer No. of Uni- Multi- Specdup Efficiency .
Model Processors Pprocessor processor
_ Timing Timing
n T (s) T.(s) §=T,T, E=5/k

Cray Y-MP C9G 16 0.77 0.069 11.12 0.69
NEC 8§X-3 2 0.15 0.082 1.82 0.91
Cray Y-MP/8 ' 8] 2.17 0.312 6.96 0.87
Fujitsu AP 1000 512 160.0 .10 147.0 0.29
IBM 3090/600S8 VF 6 7.27 1.29 5.64 0.94
Intel Delta - 512 22.0 " 1.50 © 147 0.03
Alliant FX/2800-200 14 229 ' 2.06 1.1 0.79
nCUBE/2 1024 3310 259 128.0 0.12
Convex (3240 4 149 392 3.81 095
Parsytec FT-400 400 1075.0 4.90 219.0 0.55

Source: Jack Dongarra, “Performance of Various Computers Using Standard Linear Equations Software,” Computer
Science Dept., Univ. of Tennessee, Knoxville, TN 37996-1301, March 11, 1992,

3.1.4 Benchmarks and Performance Measures

We have used MIPS and Mflops to describe the instruction execution rate and Sloating-point capability of a
parailel computer. The MIPS rate defined in Eq. 1.3 is calculated from clock frequency and average CPI. In
practice, the MIPS and Mfiops ratings and other performance indicators to be introduced below should be
measured from running benchmarks or real programs on real machines.

In this section, we introduce standard measures adopted by the industry to compare various computer
performance, including Mfops, MIPS, KLIPS, Dhrystone, and Whestone, as often encountered in reported
computer ratings,

Most computer manufacturers state peak or sustained performance in terms of MIPS or Mflops. These
ratings are by no means conclusive. The real performance is always program-dependent or application-
driven. In general, the MIPS rating depends on the instruction set, varies between programs, and even varies
inversely with respect to performance, as observed by Hennessy and Patterson (1990).

9g “NEa Advanced Computer Architecture

To compare processors with different clock cycles and different instruction sets is not totally fair. Besides
the native MIPS, one can define a relative MIPS with respect to a reference machine. We will discuss
relative MIPS rating against the VAX/780 when Dhrystone performance is introduced below. For numerical
computing, the LINPACK resuits on a large number of computers are reported in Chapter 8.

Similarly, the Mflops rating depends on the machine hardware design and on the program behavior. MIPS
and Mflops ratings are not convertible because they measure different ranges of operations, The conventional
rating is called the native Mflops, which does not distinguish unnormalized from normalized floating-point
operations.

For example, a real floating-point divide operation may correspond to four normalized floating-point
divide operations. One needs to use a conversion table between real and normalized floating-point operations
to convert a native Mflops rating to a normalized Mflops rating.

The Dhrystone Results This is a CPU-intensive benchmark consisting of a mix of about 100 high-
level language instructions and data types found in system programming applications where floating-point
operations are not used (Weicker, 1984). The Dhrystone statements are balanced with respect to statement
type, data type, and locality of reference, with no operating system calls and making no use of library
functions or subroutines. Thus the Dhrystone rating should be a measure of the integer performance of
modern processors. The unit KDhrystones/s is often used in reporting Dhrystone results.

The Dhrystone benchmark version 1.1 was applied to a number of processors. DEC VAX 11/780 scored
1.7 KDhrystones/s performance. This machine has been used as a reference computer with a 1MIPS
performance. The relative VAX/MIPS rating is commonly accepted by the computer industry.

The Whetstone Results This is a Fortran-based synthetic benchmark assessing the floating-point
performance, measured in the number of K Whetstones/s that a system can perform. The benchmark includes
both integer and floating-point operations involving array indexing, subroutine calls, parameter passing,
conditional branching, and trigonometric/transcendental functions.

The Whetstone benchmark does not contain any vectorizable code and shows dependence on the system’s
mathematics library and efficiency of the code generated by a compiler.

The Whetstone performance is not equivalent to the Mflops performance, although the Whetstone contains
a large number of scalar floating-point operations.

Both the Dhrystone and Whetstone are synthetic benchmarks whose performance results depend heavily
on the compilers used. As a matter of fact, the Dhrystone benchmark program was originally written to test
the CPU and compiler performance for a typical program. Compiler techniques, especially procedure in-
lining, can significantly affect the Dhrystone performance.

Both benchmarks were criticized for being unable to predict the performance of user programs. The
sensitivity to compilers is a major drawback of these benchmarks. In real-life problems, only application-
oriented benchmarks will do the trick. We will examine the SPEC and other benchmark suites in Chapter 9.

The TPS and KLIPS Ratings On-line transaction processing applications demand rapid, interactive
processing for a large number of relatively simple transactions. They are typically supported by very large
databases. Automated teller machines and airline reservation systems are familiar examples. Today many
such applications one web-based.

Principles of Scalable Performance " 99

The throughput of computers for on-line transaction processing is often measured in transactions per second
(TPS). Each transaction may involve a database search, query answering, and database update operations.
Business computers and servers should be designed to deliver a high TPS rate. The TP1 benchmark was
originally proposed in 1985 for measuring the transaction processing of business application computers. This
benchmark also became a standard for gauging relational database performances.

Over the last couple of decades, there has been an enormous increase both in the diversity and the scale
of computer applications deployed around the world. The world-wide web, web-based applications, multi-
media applications and search engines did not exist in the early 19990s. Such scale and diversity have been
made possible by huge advances in processing, storage, graphics display and networking capabilities over
this period, which have been reviewed in Chapter 13.

For such applications, application-specific benchmarks have become more important than general purpose
benchmarks such as Whetstone. For web servers providing 24 x 7 service for example, we may wish to
benchmark—under simulated but realistic load conditions—performance parameters such as: throughput (in
number of requests served and/or amount of data delivered) and average response time.

In artificial intelligence applications, the measure KLIPS (kilo logic inferences per second) was used at
one time to indicate the reasoning power of an Al machine. For example, the high-speed inference machine
developed under Japan’s Fifth-Generation Computer System Project claimed a performance of 400 KLIPS.

Assuming that each logic inference operation involves about 100 assembly instructions, 400 KLIPS
implies approximately 40 MIPS in this sense. The conversion ratio is by no means fixed. Logic inference
demands symbolic manipulations rather than numeric computations. Interested readers are referred to the
book edited by Wah and Ramamoorthy (1990).

- Massively parallel processing has become one of the frontier challenges in supercom-

puter applications. We introduce grand challenges in high-performance computing and
communications and then assess the speed, memory, and 1/O requirements to meet these challenges.
Characteristics of parallel algorithms are also discussed in this context.

3.2.1 Massive Parallelism for Grand Challenges

The definition of massive parallelism varies with respect to time. Based on today’s standards, any machine
having hundreds or thousands of processors is a massively paraliel processing (MPP) system. As computer
technology advances rapidly, the demand for a higher degree of parallelism becomes more obvious.

The performance of most commercial computers is marked by their peak MIPS rate or peak Mflops
rate. In reality, only a fraction of the peak performance is achievable in real benchmark or evaluation runs.
Observing the sustained performance makes more sense in evaluating computer performance.

Grand Challenges We review below same of the grand challenges identified in the U.S. High-Performance
Computing and Communication (HPCC) program, reveal opportunities for massive parallelism, assess past
developments, and comment on future trends in MPP.

(1) The magnetic recording industry relies on the use of computers to study megmetostatic and exchange

100" Wi Advanced Computer Architecture

interactions in order to reduce noise in metallic thin films used to coat high-density disks. In general,
all research in science and engineering makes heavy demands on computing power.

(2) Rational drug design is being aided by computers in the search for a cure for cancer, acquired
immunodeficiency syndrome and other diseases. Using a high-performance computer, new potential
agents have been identified that block the action of human immunodeficiency virus protease.

(3) Design of high-speed transport aircraft is being aided by computational fluid dynamics running on
supercomputers. Fuel combustion can be made more efficient by designing better engine models
through chemical kinetics calculations.

{4) Catalysts for chemical reactions are being designed with computers for many biological processes
which are catalytically controlled by enzymes. Massively parallel quantum models demand large
simulations to reduce the time required to design catalysts and to optimize their properties.

(5) Ocean modeling cannot be accurate without supercomputing MPP systems. Ozone depletion and
climate research demands the use of computers in analyzing the complex thermal, chemical and fluid-
dynamic mechanisms involved.

(6) Other important areas demanding computational support include digital anatomy in real-time medical
diagnosis, air pollution reduction through computational modeling, the design of protein structures
by computational biologists, image processing and understanding, and technology linking research to
education.

Besides computer science and computer engineering, the above challenges also encourage the emerging
discipline of computational science and engineering. This demands systematic application of computer
systems and computational solution techniques to mathematical models formulated to describe and to
simulate phenomena of scientific and engineering interest.

The HPCC Program also identified some grand challenge computing requirements of the time, as shown
in Fig. 3.5. This diagram shows the levels of processing speed and memory size required to support scientific
simulation modeling, advanced computer-aided design (CAD), and real-time processing of large-scale
database and information retrieval operations. In the period since the early 1990s, there have been huge
advances in the processing, storage and networking capabilities of computer systems. Some MPP systems
have reached petaflop performance, while even PCs have gigabytes of memory. At the same time, computing
requirements in science and engineering have also grown enormously.

Exploiting Massive Parallelism The parallclism embedded in the instruction level or procedural level is
rather limited. Very few parallel computers can successfully execute more than two instructions per machine
cycle from the same program. Instruction parallelism is often constrained by program behavior, compiler/OS
incapabilities, and program flow and execution mechanisms built into modern computers.

On the other hand, data parallelism is much higher than instruction parallelism. Data parallelism refers to
the situation where the same operation (instruction or program) executes over a large array of data (operands).
Data parallelism has been implemented on pipelined vector processors, SIMD array processors, and SPMD
ot MPMD multicomputer systems.

In Table 1.6, we find SIMD data parallelism over 65,536 PEs in the CM-2. One may argue that the CM-2
was a bit-slice machine. Even if we divide the number by 64 (the word length of a typical supercomputer),
we still end up with a DOP on the order of thousands in CM-2.

The vector length can be used to determine the parallelism implementable on a vector supercompuler.

Principles of Scalable Performance ... 14]]

In the case of the Cray Y/MP C-90, 32 pipelines in 16 processors could potentially achieve a DOP of
32x 5 =160 if the average pipeline has five stages. Thus a pipelined processor can support a lower degree of
data parallelism than an SIMD computer.

Memory Capacity Globat Change

b Human Genome

Fluid Turbulence

Vehicle Dynamics

Ocean Circutation

Viscous Fiuid Dynamics
Superconductor Modeling
Semiconductor Modeling
Quantum Chromodynamics

100 GB —+— Vision

1000 GB —

MGB—+— ~— — — —— — - Structural
Vehicle | Biology
Signature |

!

I
72-Hour .
1GB—— Weather | Pharmaceautical

|

|

|

|

|

[

|

|

|

|

i

| Design :
|

|

3D Plasma :
1060 MB —1— Modeling |
|

|

f

|

|

I

|

Chemical Dynamics
48-Hour
Weather

Airfoil | Qil Reservoir]
Modeling |

i
I
!
I
I
!
I
!
10 MB —— :
!

1980 1988 1991 1993 1995 and beyond

f I } } { » System Speed

100 Mfiops 1 Gflops 10 Gflops 100 Gflops 1 Tflops

Fig.3.5 Grand challenge requirements in computing and communications (Courtesy of U.S. High-Performance
Computing and Communication Program, 1992) :

On a message-passing multicomputer, the parallelism is more scalable than a shared-memory
multiprocessor. As revealed in Table 1.4, the nCUBE/2 could achieve a maximum parallelism on the order of
thousands if all the node processors were kept busy simultaneously.

The Past and the Future MPP systems started in 1968 with the introduction of the Illiac IV computer
with 64 PEs under one controller. Subsequently, a massively parallel processor, called MPP, was built by
Goodyear with 16,384 PEs. IBM built a GF11 machine with 576 PEs. The MasPar MP-1, AMT DAP610, and
CM-2 were all early examples of SIMD computers.

|01‘“ Advanced Computer Architecture

Early MPP systems operating in MIMD mode included the BBN TC-2000 with a maximum configuration
of 512 processors. The IBM RP-3 was designed to have 512 processors (only a 64-processor version was
built). The Intel Touchstone Delta was a system with 570 processors.

Several subsequent MPP projects included the Paragon by Intel Supercomputer Systems, the CM-5 by
Thinking Machine Corporation, the KSR-1 by Kendall Square Research, the Fujitsu VPP500 System, the
Tera computer, and the MIT *T system.

IBM announced MPP projects using thousands of IBM RS/6000 and later Power processors, while Cray
developed MPP systems using Digital’s Alpha processors and later AMD Opteron processors as building
blocks. Some early MPP projects are summarized in Table 3.2. We will study some of these systems in later
chapters, and more recent advances in Chapter 13.

Table 3.2 Early Representative Massively Parallel Processing Systems

MPP System Arch__itecture, Technology, and Operational Features

Intel Paragon A 2-D'mesh-connected niul!icomput_er, bu.ﬂt with i860 XP processors and
wormhole routers, targeted for 390 Gflops in peak performance.

{BM MPP Model . Use IBM RISC/6000 processors as b_uil_dihg blocks, 50 Gflops
peak expected for a 1024-processor configuration.

TMC CM-5 - A universal architecture for SIMD/MIMD computing using SPARC PEs and
custom-designed FPUs, control and data networks, 2 Tflops peak for 16K nodes.

Cray Research A 3D torus heterogeneous architecture using DEC Alpha chips with special

MPP Model . communication support, global address space over physically distributed memory;

first system offered 150 Gflops in a 1024-processor configuration in 1993; capable
of growing to Tflops with larger configurations.

Kendall Square An ALLCACHE ring-connected multiprocessor with custom-designed processors,
Research KSR-1 43 Gfiops peak performance for a 1088-processor configuration.
Fujitsu VPP500 A crossbar-connected 222-PE MIMD vector system, with shared distributed

memories using VP2000 as a host; peak performance = 355 Gflops.

3.2.2 Application Models of Parallel Computers

In general, if the workload is kept unchanged as shown by curve ain Fig. 3.6a, then the efficiency £ decreases
rapidly as the machine size 7 increases. The reason is that the overhead h increases faster than the machine
size. To maintain the efficiency at a desired level, one has to increase the machine size and problem size
proportionally. Such a system is known as a scalable computer for solving scaled problems.

In the ideal case, we like to see a workload curve which is a linear function of n (curve 7 in Fig. 3.6a). This
implies linear scalability in problem size. If the linear workload curve is not achievable, the second choice 1s
to achieve a sublinear scalability as close to linearity as possible, as illustrated by curve Bin Fig. 3.6a, which
has a smaller constant of proportionality than the curve ¥

Suppose that the workload follows an exponential growth pattern and becomes enormously large, as
shown by curve @ in Fig. 3.6a. The system is considered poorly scalable in this case. The reason is that to
keep a constant cfficiency or a good speedup, the increase in workload with problem size becomes explosive
and exceeds the memory or /O limits.

Principles of Scalable Performance “ 103

Ar Workload 4 Efficiency
¥ (Linear) 1
1
1
6 (Exponential) 1
B (Sublinear) !
1
05~
1
1
o {Constant) .
|
] 1 ! | 0 |] I | S
1 10 100 1000 1 10 100 1000
Machine size, n Machine size, n
(a} Four workload growth patterns {b} Corresponding efficiency curves
1
Workload

Fixed-memory

Memory modef
':Bounq:!= -

Fixed-time model

Fixed-load model

Machine size (n)

{c) Application models for parallel computers

Fig. 3.6 Workioad growth, efficiency curves, and application models of parailel computers under resources
constraings | T om0 e e et e neer reaoy

The Efficiency Curves Corresponding to the four workload patterns specified in Fig. 3.6a, four efficiency
curves are shown in Fig. 3.6b, respectively. With a constant workload, the efficiency curve () drops rapidly.
In fact, curve o corresponds to the famous Amdahi’s law. For a linear workload, the efficiency curve (y) is
almost flat, as observed by Gustafson in 1988,

The exponential workload (6) may not be implementable due to memory shortage or I/O bounds (if real-
time application is considered). Thus the 8 efficiency (dashed lines) is achievable only with exponentially
increased memory (or I/0) capacity. The sublinear efficiency curve (f) lies somewhere between curves o
and ¥.

Scalability analysis determines whether parallel processing of a given problem can offer the desired
improvement in performance. The analysis should heip guide the design of a massively parallel processor. It
is clear that no single scalability metric suffices to cover all possible cases. Different measures will be useful
in different contexts, and further analysis is needed along multiple dimensions for any specific application.

A parallel system can be used to solve arbitrarily large problems in a fixed time if and only if its workload

1 04 ikl Advanced Computer Architecture

pattern is allowed to grow linearly. Sometimes, even if minimum time is achieved with more processors, the
system utilization {or efficiency) may be very poor.

Application Models The workload patterns shown in Fig. 3.6a are not allowed to grow unbounded. In
Fig. 3.6c, we show three models for the application of parallel computers. Thesc models are bounded
by limited memory, limited tolerance of IPC latency, or limited 1/O bandwidth. These models are briefly
introduced below. They lead to three speedup performance models to be formulated in Section 3.3.

The fixed-load model corresponds to a constant workload (curve «in Fig. 3.6a). The use of this model 1s
eventually limited by the communication bound shown by the shaded area in Fig. 3.6¢.

The fixed-time model demands a constant program execution time, regardless of how the workload scales
up with machine size. The linear workload growth (curve ¥ in Fig. 3.6a) corresponds to this model. The
fixed-memory model is limited by the memory bound, corresponding to a workload curve between yand @in
Fig. 3.6a.

From the application point of view, the shaded arcas are forbidden. The communication bound includes
not only the increasing IPC overhead but also the increasing /O demands. The memory bound is determined
by main memory and disk capacities.

In practice, an algorithm designer or a parallel computer programmer may choose an application model
within the above resource constraints, as shown in the unshaded application region in Fig. 3.6¢.

Tradeoffs in Scalability Analysis Computer cost ¢ and programming overhead p (in addition to speedup
and efficiency) are equally important in scalability analysis. After all, cost-effectiveness may impose the
ultimate constraint on computing with a limited budget. What we have studied above was concentrated on
system efficiency and fast execution of a single algorithm/program on a given parallel computer.

It would be interesting to extend the scalability analysis to multiuser environments in which multiple
programs are executed concurrently by sharing the available resources. Sometimes one problem is poerly
scalable, while another has good scalability characteristics. Tradeoffs exist in increasing resource utilization
but not necessarily to minimize the overall execution time in an optimization process.

Exploiting parallelism for higher performance demands both scalable architectures and scalable
algorithms. The architectural scalability can be limited by long communication latency, bounded memory
capacity, bounded /O bandwidth, and limited processing speed. How to achieve a balanced design among
these practical constraints is the major challenge of today’s MPP system designers. On the other hand, parailel
algorithms and efficient data structures also need to be scalable.

3.2.3 Scalability of Parallel Algorithms

In this subsection, we analyze the scalability of parallel algorithms with respect to key machine classes.
An isoefficiency concept is introduced for scalability analysis of parallel algorithms. Two examples are
used to illustrate the idea. Further studies of scalability are given in Section 3.4 after we study the speedup
performance laws in Section 3.3.

Algorithmic Characteristics Computational algorithms are traditionaily executed sequentially on
uniprocessors. Parallel algorithms are those specially devised for parallel computers. The idealized parallel
algotithms are those written for the PRAM models if no physical constraints or communication overheads are
imposed. In the real world, an algorithm is considered efficient only if it can be cost effectively implemented
on physical machines. In this sense, all machine-implementable algorithms must be architecture-dependent.
This means the effects of communicaiton overhead and architectural constraints cannot be ignored.

Principles of Scatable Performance "W |05

We summarize below important characteristics of parallel algorithms which are machine implementable:

(1) Deterministic versus nondeterministic: As defined in Section 1.4, 1, only deterministic algorithms are
implementable on real machines. Our study is confined to deterministic algorithms with polynomial
time complexity

(2) Computational granularity: As introduced in Section 2.2.1, granularity decides the size of data items
and program modules used in computation. In-this sense, we also classify algorithms as fine-grain,
medium-grain, or coarse-grain. '

(3) Parallelism profile: The distribution of the degree of parallelism in an algorithm reveals the opportunity

. for parallel processing. This often affects the'effectiveness of the parallel algorithms.

(4) Communication patterns and synchronization requirements: Communication patterns address both
memory access and interprocessor communications. The patterns can be static or dynamic, depending
on the algorithms. Static algorithms are more suitable for SIMD or pipelined machines, while dynamic
algorithms are for MIMD machines. The synchronization frequency often affects the efficiency of an

- algorithm,

(5} Uniformity of the operations: This refers to the types of fundamental operations to be performed.
Obviously, if the operations are uniform across the data set, the SIMD processing or pipelining may
be more desirable. In other words, randomly structured algorithms are more suitable for MIMD
processing. Other related issues include data types and precision desired.

{6} Memory requirement and data structures: In solving large-scale problems, the data sets may require
huge memory space. Memory efficiency is affected by data structures chosen and data movement
patterns in the algorithms. Both time and space complexities are key measures of the granularity of a
parallel algorithm,

The Isoefficiency Concept The workload w of an algorithm grows with s, the problem size. Thus, we
denote the workload w = w(s) as a function of 5. Kumar and Rao (1987) have introduced an isoefficiency
concept relating workload to machine size » needed to maintain a fixed efficiency £ when implementing
a parallel algorithm on a parallel computer. Let h be the total communication overhead involved in the
algorithm implementation. This overhead is usually a function of both machine size and problem size, thus
denoted k= h(s, n).

The efficiency of a parallel algorithm implemented on a given parallel computer is thus defined as

E=— "0 (3.20)
w(s)+ h(s,n)

The workload w(s) corresponds to useful computations while the overhead h(s, n} are computations
attributed to synchronization and data communication delays. In general, the overhead increases with respect
to both increasing values of s and n. Thus, the efficiency is always less than 1. The question is hinged on
relative growth rates between w(s) and A(s, n).

With a fixed problem size (or fixed workload}, the efficiency decreases as # increase. The reason is that the
overhead #(s, n) increases with n. With a fixed machine size, the overhead # grows slower than the workload
w. Thus the efficiency increases with increasing problem size for a fixed-size machine. Therefore, one can
expect to maintain a constant efficiency if the workload w is allowed to grow propetly with increasing
machine size.

| 06" kil Advanced Computer Architecture

For a given algorithm, the workload w might need to grow polynomially or exponentially with respect to
x in order to maintain a fixed efficiency. Different algorithms may require different workload growth rates
to keep the efficiency from dropping, as n is increased. The isoefficiency functions of common parallel
algorithms are polynomial functions of n; i.e., they are O(n") for some k 2 1. The smaller the power of nin
the isoefficiency function, the more scalable the parallel system. Here, the system includes the algorithm and
architecture combination.

Isoefflciency Function We can rewrite Eq. 3.20 as £ = 1/(1 + A(s, n)/w(s)). In order to maintain a constant
E, the workload w(s) should grow in proportion to the overhead (s, n). This leads to the following condition:

EE % h(s, 1) . (3.21)

wis) = N

The factor C = E/(1 — E) is a constant for a fixed efficiency E. Thus we can define the isoefficiency function
as follows:

fe(ny=Cx his, n) (3.22)

1 the workload w(s) grows as fast as fz(n} in Eq. 3.21, then a constant efficiency can be maintained for a
given algorithm-architecture cormbination. Two examples are given below to illustrate the use of isoefficiency
functions for scalability analysis.

L)
Cg Example 3.4 Scalability of matrix multiplication algorithms
(Gupta and Kumar, 1992)

Four algorithms for matrix multiplication are compared betow. The problem size s is represented by the
matrix order. In other words, we consider the multiplication of two s X s matrices A and B to produce an
output matrix C=Ax B. The total workload involvedis w = O(s3). The number of processors used is confined
within 1 <# <5°. Some of the algorithms may use less than s processors.

The isoefficiency functions of the four algorithms are derived below based on equating the workload with
the communication overhead (Eg. 3.21) in each algorithm. Details of these algorithms and corresponding
architectures can be found in the original papers identified in Table 3.3 as well as in the paper by Gupta and
Kumar (1992). The derivation of the communication overheads is left as an exercise in Problem 3.14.

The Fox-Otto-Hey algorithm has a total overhead A(s, n) = O(nlogn+ st \/; }. The workload w= oK)=
O(nlogn+ s ﬁ }. Thus we must have 0(33) = O(nlogn) and O(s) = X Jn). Combining the two, we obtain
the isoefficiency function o’y = O(n*'?), where 1 <n < % as shown in the first row of Table 3.3,

Although this algorithm is written for the torus architecture, the torus can be easily embedded in a
hypercube architecture. Thus we can conduct a fair comparison of the four algorithms against the hypercube
architecture,

Berntsen’s algorithm restricts the use of n < 5 processors. The total overhead is O(n‘”z' +nlogn+ stV 3.
To match this with O(s3), we must have O(.e3) = O(n‘w') and O(S3 } = O{n). Thus, O(s3) must be chosen to yield
the isoefficiency function o).

The Gupta-Kumar algorithm has an overhead O(nlogn + s2nY 3'log n). Thus we must have 0(53) =Xnlogn)
and 0(s°) = O(szn”3 logn). This leads to the isoefficiency functien O(n(log n)*) in the third row of Table 3.3.

Principles of Scalable Performance .- |07

The Dekel-Nassimi-Sahni algorithm has a total overhead O(nlogn + 5°) besides a useful computation time
of 0(53/11) for s* < n < 5°. Thus the workload growth O(s*)= O(n log n) will yield the isoefliciency listed in

the last row of Table 3.3,

Table 3.3 Asymptotic Isoefficiency Functions of Four Matrix Mutiplication Algorithms (Gupta and Kumar, 1992)

Matrix Multiplication Isoéﬂ‘icie:xy Range of Turget Machine
Algorithm Function fi(n) Applicability Architecture
Fox, Otto, and Hey o) 1<ngs? 4 Jnx Jrtorus
(1987))
Bemntsen o) 1<ngs A hypercube with
(1989) n=2"*nodes
Gupta and Kumar O(n(log}l}sj’ IR l1<ngs A hypercube with
(1992) Tl n=2?knodes
_ a s andk?;-%-logs
Dekel, Nassimi, and o O(a logn) - s <n<s A hypercube with
Sahni (1981) GemmEn n=5°=*nodes

Note: Two s X s matrices are multiplied.

The above isoefficiency functions indicate the asymptotic scalabilities of the four algorithms. In practice,
none of the algorithms is strictly better than the others for all possible probiem sizes and machine sizes. For
example, when these algorithms are implemented on a multicomputer with a long communication latency (as
in Intel iPSC1), Berntsen’s algorithm is superior to the others.

To map the algorithms on an SIMD computer with an extremely low synchronization overhead, the
algorithm by Gupta and Kumar is inferior to the others. Hence, it is best to use the Dekel-Nassimi-Sahni
algorithm for s° < nn < 5°, the Fox-Otto-Hey algorithm for s° < » < 5%, and Berntsen’s algorithm for n < 3
for SIMD hypercube machines.

)

This example demonstrates the sensitivity of machine architecture on the scalability of the FFT on two
different parallel computers: mesh and hypercube. We consider the Cooley-Tukey algorithm for one-
dimensional s-point fast Fourier transform.

Example 3.5 Fast Fourier transform on mesh and hypercube
computers (Gupta and Kumar, 1993)

Gupta and Kumar have established the overheads: hi(s, ny = O(nlogn + slog n) for FFT on a hypercube
machine with » processors, and h; (s, 1) = O(n logn+s Jn Jona Jn x Jn mesh with » processors.

For an s-point FFT, the total workload involved is w(s) = O(slogs). Equating the workload with overheads,
we must satisfy O(slogs) = O(nlogn) and O(siogs) = O(slogn), leading to the isoefficiency function
Ji= O(nlogn) for the hypercube machine.

1 0p Tl Advanced Computer Architecture

Similarly, we must satisfy O(slogs) = O(nlog nyand O(slogs) = Ofs Jn } by equating wis) = (s, n). This

leads to the isoefficiency function f; = O(f nk v) for some constant £ < 2.
The above analysis leads to the conclusion that FFT is indeed very scalable on a hypercube computer. The
result is plotted in Fig. 3.7a for three efficiency values.

A Problem size (s) b Problem size (s}
10x 10°1 10x10°1
E=087
6x 10%] Bx10°1
2x10°L. 2x10° L
Hypercube
0 E =086 0 — L S
1] 500 1000 1500 2000 0 500 1000 1500 2000
Machine size (n) Machine size {n)
{a) Hypercube under three operating efficiencies {b) Comparisan between mesh and hypercube
Fig.3.7 lsoefficiency curves for FFT on two parafiel computers (Courtesy of Gupta and Kumar, 1993}

To maintain the same efficiency, the mesh is rather poorly scalable as demeonstrated in Fig. 3.7b.

This is predictable by the fact that the workload must grow exponentially in O ,[nk‘f;) for the mesh
architecture, while the hypercube demands only O(nlog n) workload increase as the machine size increases.
Thus, we conclude that the FFT is scalabie on a hypercube but not so on a mesh architecture.

If the bandwidth of the communication channels in a mesh architecture increases proportional to the
increase of machine size, the above conctusion wilt change. For the design and analysis of FFT on parallel
machines, readers are referred to the books by Aho, Hopcroft and Uliman (1974) and by Quinn (1987). We
will forther address scalability issues.from the architecture standpoint in Section 3.4,

Three speedup performance models are defined below. Amdahl’s law (1967} is based on a

fixed workload or a fixed problem size. Gustafson’s law (1987) is applied to scaled problems,
where the problem size increases with the increase in machine size. The speedup model by Sun and Ni (1993)
is for scaled problems bounded by memory capacity.

Pk tiaet b ot LR R I AL S

3.3.1 Amdahl’s Law for a Fixed Workload

In many practical applications that demand a real-time response, the computational workload is often fixed
with a fixed problem size. As the number of processors increases in a parallel computer, the fixed load is
distributed to more processors for parallel execution. Therefore, the main objective is to produce the results

Principles of Scalable Performance . 109

as soon as possible. In other words, minimal turnaround time is the primary goal. Speedup obtained for time-
critical applications is called fixed-load speedup.

Fixed-Load Speedup The ideal speedup formula given in Eq. 3.7 is based on a fixed workload, regardless
of the machine size. Traditional formulations for speedup, including Amdahl’s law, are all based on a fixed
problem size and thus on a fixed load. The speedup factor is upper-bounded by a sequential bottleneck in this
case.

We consider below both the cases of DOP < n and of DOP 2 n. We use the ceiling function [x| to represent
the smallest integer that is greater than or equal to the positive real number x. When x is a fraction, | x | equals
1. Consider the case where DOP = i > n. Assume all 7 processors are used to execute W; exclusively. The

execution time of W, is
W.|i
z.l' ny= PRI 3.23
(n) A LW (3.23)
Thus the response time is

T(my= ;'% Lﬂ (3.24)

i=]

Note that if i < n, then £,(n} = 1,(c2) = W;/iA. Now, we define the fixed-lvad speedup factor as the ratio of
(1) to I(n):
2,

Ty S

T(n) = W, [
3"

i=1

(3.25)

n

Note that §,, < .5, £ 4, by comparing Eqs. 3.4, 3.7, and 3.25.

A number of factors we have ignored may lower the speedup performance. These include communication
latencies caused by delayed memory access, interprocessor communication over a bus or a network,
or operating system overhead and delay caused by interrupts. Let ({n) be the lumped sum of all system
overheads on an n-processor system. We can rewrite Eq, 3.25 as follows:

W,
_ T 2

TWOn S, H+ o0
i n

i=1

(3.26)

The overhead delay Q{r) is certainly application-dependent as well as machine-dependent. It is very
difficult to obtain a closed form for ((x). Unless otherwise specified, we assume Q(n) = 0 to simplify the
discussion.

Amdahl’s Law Revisited In 1967, Gene Amdahl derived a fixed-load speedup for the special case

where the computer operates either in sequential mode (with DOP = 1) or in perfectly parallel mode (with

DOP = n). That is, W; = 0 if i# lor i ## in the profile. Equation 3.25 is then simplified to
_ B W,

n= (3.27)
W +W.in

[10" Advanced Computer Architecture

Amdahl’s law implies that the sequential portion of the program W; does not change with respect to the
machine size 7. However, the parallel portion is evenly executed by n processors, resulting in a reduced time.

Consider a normalized situation in which W, + W, = a + (1 — @) = 1, with o = W, and a = W,,.
Equation 3.27 is reduced to Eq. 3.14, where « represents the percentage of a program that must be executed
sequentially and 1 — ¢ corresponds to the portion of the code that can be executed in parallel.

Amdahl’s law is illustrated in Fig. 3.8. When the number of processors increases, the load on each
processor decreases, However, the total amount of work (workload) W, + W, is kept constant as shown in
Fig. 3.8a. In Fig. 3.8b, the total execution time decreases because T, = W, /n. Eventually, the sequential part
will dominate the performance because T, — 0 as n becomes very large and 7, is kept unchanged.

4 Workload W\ Execution Time

W[W4 W W, W W,

Wn Wn Wn wn Wn Wn
1 23 45 6 1 2 3 4 5 6
No. of processors No. of processors
(a) Fixed workload (b) Decreasing execution time
Speedupi
S
©n) 1024x
s . 1024
91x 1024~ 7371023

0% 1% 2% 3% 4% 100%
Sequential fraction of program
{c) Speedup with a fixed load

Fig.3.8 Fixed-foad speedup model and Amdahl's law

Sequential Bottleneck Figure 3.8¢c plots Amdahl’s law using Eq. 3.14 over the range 0 < o < 1. The
maximum speedup S, = » if ¢ = 0. The minimum speedup S, = 1 if &= 1. As n — oo, the limiting value of
S,—>1/c. This implies that the speedup is upper-bounded by l/a, as the machine size becomes very large.

Principles of Scalable Performance . It

The speedup curve in Fig. 3.8¢ drops very rapidly as & increases. This means that with a small percentage
of the sequential code, the entire performance cannot go higher than I/a. This o has been called the sequential
bottleneck in a program.

The problem of a sequential bottleneck cannot be solved just by increasing the number of processors in a
system. The real problem lies in the existence of a sequential fraction of the code. This property has imposed
a pessimistic view on parallel processing over the past two decades.

In fact, two major impacts on the parallel computer industry were observed. First, manufacturers were
discouraged from making large-scale parallel computers, Second, more research attention was shifted toward
developing parallelizing compilers which would reduce the value of & and in turn boost the performance.

3.3.2 Gustafson’s Law for Scaled Problems

One of the major shortcomings in applying Amdahl’s law is that the problem (workload) cannot scale to
match the available computing power as the machine size increases. In other words, the fixed load prevents
scalability in performance. Although the sequential bottleneck is a serious problem, the problem can be
greatly aileviated by removing the fixed-load (or fixed-problem-size) restriction. John Gustafson (1988) has
proposed a fixed-time concept which leads to a scaled speedup model.

Scaling for Higher Accuracy Time-critical applications provided the major motivation leading to the
development of the fixed-load speedup model and Amdahl’s law. There are many other applications that
emphasize accuracy more than minimum turnaround time. As the machine size is upgraded to obtain more
computing power, we may want to increase the problem size in order to create a greater workload, producing
more accurate solution and yet keeping the execution time unchanged.

Many scientific modeling and engineering simulation applications demand the solution of very large-
scale matrix problems based on some partial differential equation (PDE) formulations discretized with a
huge number of grid points. Representative examples include the use of finite-¢lement method to perform
structural analysis or the use of finite-difference method to solve computational fluid dynamics problems in
weather forecasting.

Coarse grids require less computation, but finer grids require many more computations, yielding greater
accuracy. The weather forecasting simulation often demands the solution of four-dimensional PDEs. If one
reduces the grid spacing in each physical dimension (X, ¥, and Z) by a factor of 10 and increases the time
steps by the same magnitude, then we are talking about an increase of 10* times more grid points. The
workload thus increases to at least 10,000 times greater,

With such a problem scaling, of course, we demand more computing power to yield the same execution
time. The main advantage is not in saving time but in producing much more accurate weather forecasting.
This problem scaling for accuracy has motivated Gustafson to develop a fixed-time speedup model. The
scaled problem keeps all the increased resources busy, resulting in a better system utilization ratio.

Fixed-Time Speedup In accuracy-critical applications, we wish to solve the largest problem size possible
on a larger machine with about the same execution time as for solving a smaller problem on a smaller machine,
As the machine size increases, we have to deal with an increased workload and thus a new parallelism profile.
Let m” be the maximum DOP with respect to the scaled problem and ¥’ be the scaled workload with DOP=1.

Note that in general W) > W, for 2 £ i < m" and W[= W,. The fixed-time speedup is defined under the
assumption that T{1)} = T'(n), where T'(n) is the execution time of the scaled problem and 7(1) corresponds
to the original problem without scaling. We thus obtain

] |2w Advanced Computer Architecture

2V - ZWTPW +Q(m) (3.28)

, n
i=1 i=l
A general formula for fixed-time speedup is defined by §, = T (1)/T’(n), modified from Eq. 3.26:

Sw 5w
i=1

5= L =1 (3.29)

m ,-’ l T m
;.--[-;JJrQ(n) z{W

Gustafson’s Law Fixed-time speedup was originally developed by Gustafson for a special parallelism
profile with ;= 0 if i # | and / # n. Similar to Amdahl’s law, we can rewrite Eq. 3.29 as follows, assuming

Q) =0,
LW
il _ W+ W el
Wo+W, W+W,

;
i=1

S, = (3.30)

m
2
i=1
where W= nW, and W, + W, = W + W/, corresponding to the fixed-time condition. From Eq. 3.30, the
parallel workload W/, has been scaled to » times W), in a linear fashion.

The relationship of a scaled workload to Gustafson’s scaled speedup is depicted in Fig. 3.9. In fact,
Gustafson’s law can be restated as follows in terms of = #) and | — o= W, under the same assumption
W, + W, = 1 that we have made for Amdahl’s law:

s= 9= d) L - (331)
o+ (1-o)

In Fig. 3.9a, we demonstrate the workload scaling sitzation. Figure 3.9b shows the fixed-time execution
style. Figure 3.9¢ plots S, as a function of the sequential portion & of a program running on a system with
n = 1024 processors. .

Note that the slope of the S, curve in Fig. 3.9c is much flatter than that in Fig. 3.8¢c. This implies that
Gustafson’s law does support scalable performance as the machine size increases. The idea is to kecp all
processors busy by increasing the problem size. When the problem can scale to match available computing
power, the sequential fraction is no longer a bottleneck.

3.3.3 Memory-Bounded Speedup Model

Xian-He Sun and Lionel Ni (1993) have developed 2 memory-bounded speedup model which generalizes
Amdahl’s law and Gustafson’s law to maximize the use of both CPU and memory capacities. The idea
is to solve the largest possible problem, limited by memory space. This also demands a scaled workload,
providing higher speedup, higher accuracy, and better resource utilization.

Memory-Bound Problems Large-scale scientific or engineering computations often require larger
memory space. In fact, many applications of paraliel computers are memory-bound rather than CPU-bound

Principles of Scalable Performance .. 3

4 Workioad Vv': 4 Execution Time

Ty Tq| Tqy T Tq| Ty

Tn Tﬂ T-"l Tn Tn T."J
> 1) >
1 2 3 4 5 6 1 2 3 4 5 &
No. of processors No. of processors
(a1) Scaled workload (b) Fixed execution time

Speedup 4
(Sn) 1 024x

1014x 1004x 993x 983x

1024 = 1024 —1023ct

0% 1% 2% 3% 4%
Sequential fraction of program
(¢) Speedup with fixed execution time

Fig.3.9 Fixed-ime speedup model and Gustafson’s law

or I/O-bound. This is especially true in a multicomputer system using distributed memory. The local memory
attached to each node may be relatively small. Therefore, each node can handle only a small subproblem.

When a large number of nodes are used collectively to solve a single large problem, the total memory
capacity increases proportionally. This enables the system to solve a scaled problem through program
partitioning or replication and domain decomposition of the data set.

Instead of keeping the execution time fixed, one may want to use up all the increased memory by scaling
the problem size further. In other words, if you have adequate memory space and the scaled problem meets
the time limit imposed by Gustafson’s law, you can further increase the problem size, yielding an even better
or more accurate solution.

A memory-bounded model was developed under this philosophy. The idea is to solve the largest possible
problem, limited only by the available memory capac:ty This model may result in an increase in execution
time to achieve scalable performance.

| 14" il Advanced Computer Architecture

Fixed-Memory Speedup Let M be the memory requirement of a given problem and #be the computational
workload. These two factors are related to each other in various ways, depending on the address space and
architectural constraints. Let us write W= g(AMyor M=g (), where g !'is the inverse of g.

In a multicomputer, the total memory capacity increases linearly with the number of nodes available.
We write W = Z:":, W, as the workload for sequential execution of the program on a single node, and

W= Ef”:l W* as the scaled workload for execution on # nodes, where m* is the maximum DOP of the scaled
problem. The memory requirement for an active node is thus bounded by g"l W)
A fixed-memory speedup is defined below similarly to that in Eq. 3.29.

ot

2
i=1
3 [1Jooo

i=1

Sh= (3.32)

The workload for sequential execution on a single processor is independent of the problem size or system
size. Therefore, we can write ¥, = W) = W* in all three speedup models. Let us consider the special case of
two operational modes: sequential versus perfectly parallel execution. The enhanced memory is related to the
scaled workload by W% = g*(nM), where nM is the increased memory capacity for an n-node multicomputer.

Furthermore, we assume g*(nM) = G(m)g(M) = G(mW,, where W, = g(M) and g* is a homogeneous
function. The factor Gi(n) reflects the increase in workload as memory increases n times. Now we are rcady
to rewrite Fq. 3.32 under the assumption that #; =0 ifi £ lorwand O(n)=0:

W+ Wy W+ G,
Wr+Wiin W+ G(mW, in

Rigorously speaking, the above speedup model is valid under two assumptions: (1) The collection of
all memory forms a global address space (in other words, we assume a shared distributed memory space);
and (2) All available memory areas are used up for the scaled problem. There are three special cases where
Eq. 3.33 can apply:

*
n

(3.33)

Case 1: G{(n)= 1. This corresponds to the case where the problem size is fixed. Thus, the fixed-memory
speedup becomes equivalent to Amdahl’s law: ie. Egs. 3.27 and 3.33 are equivalent when a fixed
workload is given.

Case 2: G(n) = n. This applies to the case where the workload increases n times when the memory is
increased n times. Thus, Eq. 3.33 is identical to Gustafson’s law (Eq. 3.30) with a fixed execution time.
Case 3: G(n) > n. This corresponds to the situation where the computational workload increases faster
than the memory requirement. Thus, the fixed-memory model (Eq. 3.33) will likely give a higher
speedup than the fixed-time speedup (Eq. 3.30).

The above analysis leads to the following conclusions: Amdahl’s law and Gustafson’s law are special
cases of the fixed-memory model. When computation grows faster than the memory tequirement, as is often
true in some scientific simulation and engineering applications, the fixed-memory model (Fig. 3.10) may
yield an even higher speedup (i.e., % = 8%, = S,) and better resource utilization.

The fixed-memory model also assumes a scaled workload and allows an increase in execution time. The
increase in workload (problem size) is memory-bound. The growth in machine size is limited by increasing

Principles of Scafable Performance — s

communication demands as the number of processors becomes large. The fixed-time model can be moved
very close to the fixed-memory model if available memory is fully utilized.

T Workload W; 4 Execution Time

W,

> 1} » 11
1 2 3 4 5 & 1 2 3 4 5 8
No. of processors No. of processors
(a) Scaled workioad (b) Increased execution time

Fig.3.10 Scaied speedup model usihg‘ fixed, memory (Courtesy of Sun and Ni; reprinted with permission from

ACM Supercomputing, 1990)
S0
Example 3.6 Scaled matrix multiplication using global
versus local computation models (Sun and

Ni, 1993)

In scientific computations, a matrix often represents some discretized data contimium. Enlarging the matrix
size generally leads to a more accurate solution for the continuum. For matrices with dimension #, the number
of computations involved in matrix multiplication is 2 and the memory requirement is roughly M = 3n°,

As the memory increases » times in an n-processor multicomputer system, nM = n x 3#° = 3n°. If the
enlarged matrix has a dimension of N, then 3" = 382, Therefore. N = n'>. Thus G(ny=n"", and the scaled
workload W% = G(n)W, = n'>W. Using Eq. 3.33, we have

Wi+nW, W+ nSw,
W, W W,

n

S =

(3.34)
o+

under the global computation model iilustrated in Fig. 3.11a,. where all the distributed memories are used as.
a common memory shared by all processor nodes.

Asillustrated in Fig. 3.11b, the node memories are used locally without sharing. In such a local computation
tmodel, G(n) = n, and we obtain the follewing speedup:
_ W+l
W,

S*

(3.35)

| IG‘ Advanced Computer Architecture

N, N, }_. Ng | -ee —= Np
AB; AB; ABj AB,,
{a) Global computation with distributed shared memories

N, N, Ny ces N,
AB,4 AB, AB5 AB,
{b) Local computation with distributed private memories

Fig.3.11 Two models for the distributed matrix multplication

The above example illustrates Gustafson’s scaled specdup for local computation, Comparing the above
two speedup expressions, we realize that the fixed-memory speedup (Eq. 3.34) may be higher than the fixed-
time speedup (Eg. 3.35). In general, many applications demand the use of a combination of local and global
addressing spaces. Data may be distributed in some nodes and duplicated in other nodes. Data duplication is
added deliberately to reduce communication demand. Speedup factors for these applications depend on the
ratio between the global and local computations.

SCALABILITY ANALYSIS AND APPROACHES

The performance of a computer system depends on a large number of factors, all affecting the
scalability of the computer architecture and the application program involved. The simplest
definition of scalability is that the performance of a computer system increases linearly with respect to the
number of processors used for a given application,

Scalability analysis of a given computer system must be conducted for a given application program/
algorithm. The analysis can be performed under different constraints on the growth of the problem size
(workload) and on the machine size (number of processors). A good understanding of scalability will help
evaluate the performance of parallel computer architectures for Jarge-scale applications.

3.4.1 Scalability Metrics and Goals

Scalability studies determine the degree of matching between a computer architecture and an application
algorithm. For different {architecture, algorithm) pairs, the analysis may end up with different conclusions. A
machine can be very efficient for one algorithm but bad for another, and vice versa.

Thus, a good computer architecture should be efficient in implementing a large class of application
algorithms. In the ideal case, the computer performance should be linearly scalable with an increasing number
of processors employed in implementing the algorithms.

Scalability metrics Identified below are the basic metrics (Fig. 3.12) affecting the scalability of a computer
system for a given application:

s+ Machine size (n)}—the number of processors employed in a parallel computer system. A large machine
size implies more resources and more computing power.

Principles of Scalable Perfarmance 17

CPU Machine Computer
Time Size Cost

T Scalability of Memory
(architecture, algorithm)
Demand Combination Demand
Programming Problem Communication
Cost Size Overhead

Fig.3.12 Scalability metrics

+ Clock rate (fy—the clock rate determines the basic machine cycle. We hope to build a machine with
components {processors, memory, bus or network, etc.} driven by a clock which can scale up with
better technology.

+ Problem size (5)—the amount of computational workload or the number of data points used to solve a
given problem. The problem size is directly proportional to the sequential execution time T(s, 1) for a
uniprocessor system because each data point may demand one or more operations.

» CPU time (T)—the actual CPU time (in seconds) ¢lapsed in executing a given program on a parallel
machine with n processors collectively. This is the parallel execution time, denoted as T{s, n) and is a
function of both s and .

* [/0 demand {d)—the input/output demand in moving the program, data, and results associated with a
given application run. The 1/O operations may overlap with the CPU operations in a multiprogrammed
environment.

+ Memory capacity (m)-—the amount of main memory (in bytes or words) used in a program execution.
Note that the memory demand is affected by the problem size, the program size, the algorithms, and
the data structures used.

The memory demand varies dynamically during program execution. Here, we refer to the maximum
number of memory words demanded. Virtual memory is almost unlimited with a 64-bit address space.
It is the physical memory which may be limited in capacity.

» Communication overhead (h)--the amount of time spent for interprocessor communication,
synchronization, remote memory access, etc. This overhead also includes ali noncompute operations -
which do not involve the CPUs or 1/O devices. This overhead A(s, n) is a function of s and » and is not
part of T(s, n). For a uniprocessor system, the overhead (s, 1} = 0.

« Computer cost (c)—the total cost of hardware and software resources required to carry out the
execution of a program.

* Programming overhead (p)—the development overhead associated with an application program.
Programming overhead may slow down software productivity and thus implies a high cost. Unless
otherwise stated, both computer cost and programming cost are ignored in our scalability analysis.

Depending on the computational objectives and resource constraints imposed, one can fix some of the
above parameters and optimize the remaining ones to achieve the highest performance with the lowest cost.
The notion of scalability is tied to the notions of speedup and efficiency. A sound definition of scalability
must be able to express the effects of the architecture’s interconnection network, of the communication patterns

115 il Advanced Compurter Architecture

inherent to algorithms, of the physical constraints imposed by technology, and of the cost effectiveness or
system efficiency. We introduce first the notion of speedup and efficiency. Then we define scalability based
on the relative performance of a real machine compared with that of an idealized theoretical machine.

Speedup and Efficiency Revisited For a given architecture, algorithm, and problem size s, the asymproric
speedup S(s, n) is the best speedup that is attainable, varying only the number () of processors. Let T(s, 1)
be the sequential execution time on a uniprocessor, 7(s, #) be the minimum paralie} execution time on an
n-processor system, and k(s, n) be the lump sum of ail communication and 1/O overheads. The asymptotic
speedup is formally defined as follows:

T(s,1)
T(s,n)+ his, n}

The problem size is the independent parameter, upon which all other metrics are based. A meaningful
measurement of asymptotic speedup mandates the use of a good sequential algorithm, even it is different from
the structure of the corresponding parallel algorithm. The T(s, #} is minimal in the sense that the problem is
solved using as many processors as necessary 1o achieve the minimum runtime for the given problem size.

S(z, m)y = (3.36)

Tn scalability analysis, we are mainly interested in results obtained from solving large problems. Therefore,
the run times T{s, #) and T(s, 1) should be expressed using order-of-magnitude notations, reflecting the
asymptotic behavior.

The system efficiency of using the machine to solve a given problem is defined by the following ratio:

_ Sis, n)
n

E(s, n} (3.37)

In general, the best possible efficiency is one, implying that the best speedup is linear, or S(s, #} = n.
Therefore, an intuitive definition of scalability is: A system is scalable if the system efficiency E(s, n) = 1 for
all algorithms with any number of n processors and any problem size s.

Mark Hill (1990) has indicated that this definition is too restrictive to be useful because it precludes any
system from being called scalable. For this reason, a more practical efficiency or scalability definition is
needed, comparing the performance of the real machine with respect to the theoretical PRAM model.

Scalability Definition Nussbaum and Agarwal (1991) have given the following scalability definition
based on a PRAM model. The scalability ®(s. #) of a machine for a given algorithm is defined as the ratio of
the asymptotic speedup S{s, #) on the real machine to the asymptotic speedup Sis, ») on the ideal realization
of an EREW PRAM.

T(s. 1)

T;(s.n)

where T(s, n) is the parallel execution time on the PRAM, ignoring all communication overhead. The
scalability is defined as follows:

Si(s,m)=

S(s,n) _ T;(s,n)
S;(s, 1) T(s,n)

Intuitively, the larger the scalability, the better the performance that the given architecture can yield
running the given algorithm. In the ideal case, S;(s, n)} = n, the scalability definition in Eq. 3.38 becomes
identical to the efficiency definition given in Eq. 3.37.

D(s, 1) =

(3.38)

Principles of Scalable Performance

)

Example 3.7 Scalability of various machine architectures
for parity calculation (Nussbaum and Agarwal,
1991)

Table 3.4 shows the execution times, asymptotic speedups, and scalabilities (with respect to the EREW-PRAM
model) of five representative interconnection architectures: linear array, 2-D and 3-D meshes, hypercube, and
Omega network, for running a paralle] parity calculation.

Table 3.4 Scalability of Various Network-Based Architectures for the Parity Calculation

Machine Architecture
Metrics
Linear array 2-D mesh 3-D mesh Hypercube Omega Network
T(s. n) s s 5 logs log?s
S(s, n) st §3 4 sflog s .s/logzs
D(s, 1) iogs/s”2 log sis!? log st 1 1/log s

This calculation examines s bits, determining whether the number of bits set is even or odd using a
balanced binary tree. For this algonithm, T(s, 1) = s, T(s, n} = logs, and 5,(s, n) = s/logs for the ideal PRAM
machine.

On real architectures, the parity algorithm’s performance is limited by network diameter. For example,
the linear array has a network diameter equal to » - 1, yielding a total parallel running time of s/n + #. The
optimal partition of the problem is to use n = \F processors so that each processor performs the parity check
on J; bits locally. This partition gives the best match between computation costs and communication costs
with (s, n) = s, S(s, m) =5'? and thus scalability d(s, n) = logsfsl"z.

The 2D and 3D mesh architectures use a similar partition to match their own communication structure with
the computational loads, yielding even better scalability results. It is interesting to note that the scalability
increases as the cornmunication latency decreases in a network with a smaller diameter.

The hypercube and the Omega network provide richer communication structures (and lower diameters)
than meshes of lower dimensionality. The hypercube does as well as a PRAM for this algorithm, yielding
O(s,n)=1.

The Omega network (Fig. 2.24) does not exploit locality: communication with all processors takes the
same amount of time. This loss of locality hurts its performance when compared to the hypercube, but its
lower diameter gives it better scalability than any of the meshes.

Although performance is limited by network diameter for the above parity algorithm, for many other
algorithms the network bandwidth is the performance-limiting factor. The above analysis assumed unit
communication time between directly connected communicanon nodes. An architecture may be scalable for
one algorithm but unscalable for another. One must examine a large class of useful algorithms before drawing
a scalability conclusion on a given architecture.

[20 Wi Advanced Computer Architecture

3.4.2 Evolution of Scalable Computers

The idea of massive parallelism is rather old, the technology is advancing steadily, and the software is
relatively unexplored, as was observed by Cybenko and Kuck (1992). One evolutional trend is to build
scalable supercomputers with distributed shared memory and standardized UNIX/LINUX for parallel
processing, In this section, we present the evolutional path and some scalable computer design concepts;
recent advances in this direction are discussed in Chapter 13.

The Evolutional Path Figure 3.13 shows the early evolution of supercomputers with four-to-five-
year gestation and of micro-based scalable computers with three-year gestation. This plot shows the peak
performance of Cray and NEC supercomputers and of Cray, Inte!, and Thinking Machines scalable computers
versus the introduction year. The marked nodes correspond to machine models with increasing size and cost.

10,000 | l
The Intel ;
Teraflop $3aooM | i
Al A S Cray
/ CMS $240M | / Massively
1000 — 4 g Parallel ——4&
| 4 (DARPA) .~

M5 $120M /)
Intel $55M &
CM5 $30Ml/ ‘

1 -

100

NEC
Supers

Peak Performance (Giga-flops in log scale)

1
1988 1990 1992 1994 1896 1998 2000
Year
Fig.3.13 The performance (in Gftops) of various computers manufactured during 1990s by Cray Research, Inc.,

NEC, Intel, and Thinking Machines Carporation (Courtesy of Gordon Bell; reprinted with permission
from the Communications of ACM, August 1992)1" =

In 1988, the Cray Y-MP 8 delivered a peak of 2.8 Gflops. By 1991, the Intel Touchstone Delta, a 672-node
multicomputer, and the Thinking Machines CM-2, a 2K PE SIMD machine, both began to supply an order-
of-magnitude greater peak power (20 Gfiops) than conventional supercomputers. By mid-1992, a completely
new generation of computers were introduced, including the CM-5 and Paragon.

[Thinking Machines Corporation has since gone out of business.

Principles of Scalable Performance . 2

In the past, the IBM System/360 provided a 100:1 range of growth for its various models. DEC VAX
machines spanned a range of 1000:1 over their lifetime. Based on past experiences, Gordon Bell has identified
three objectives for designing scalable computers. Implications and case studies of these challenges will be
further discussed in subsequent chapters,

Size Scalability The study of system scalability started with the desire to increase the machine size. A size-
scalable computer is designed to have a scaling range from a small to a large number of resource components.
The expectation is to achieve linearly increased performance with incremental expansion for a well-defined
set of applications. The components include computers, processors or processing elements, memories,
interconnects, switches, cabinets, etc.

Size scalability depends on spatial and temporal locality as well as component bottleneck. Since very large
systems have inherently longer latencies than small and centralized systems, the locality behavior of program
execution will help tolerate the increased latency. Locality will be characterized in Chapter 4. The bottleneck-
free condition demands a balanced design among processing, storage, and I/0 bandwidth,

For example, since MPPs are mostly interconnected by large networks or switches, the bandwidth of the
switch should increase linearly with processor power. The [/O demand may exceed the processing bandwidih
in some real-time and large-scale applications.

The Cray Y-MP series scaled over a range of 16 processors (the C-30 model) and the current range of
Cray supercomputers offer a much larger range of scalability (see Chapter 13). The CM-2 was designed to
scale between 8K and 64K processing elements. The CM-5 scaling range was 1024 to 16K computers. The
KSR-1 had a range of 8 to 1088 processor-memory pairs. Size-scalability cannot be achieved alone without
congidering cost, efficiency, and programmability on reasonable time scale.

Generation (Time) Scalability Since the basic processor nodes become obsolete every three years, the
time scalability is equally important as the size scalability. Not only should the hardware technology be
scalable, such as the CMOS circuits and packaging technologies in building processors and memory chips,
but also the software/algorithm which demands software compatibility and portability with new hardware
systems,

DEC claimed that the Alpha microprocessor was generation-scalable for 25 years. In general, all computer
characteristics must scale proportionally: processing speed, memory speed and size, interconnect bandwidth
and latency, I/0, and software overhead, in order to be useful for a given application.

Problem Scalability The problem size corresponds to the data set size. This is the key to achieving scalable
performance as the program granularity changes. A problem scalable computer should be able to perform
well as the problem size increases. The problem size can be scaled to be sufficiently large in order to operate
efficiently on a computer with a given granularity.

Problems such as Monte Carlo simulation and ray tracing are “perfectly parallel”, since their threads of
computation do not come together over long spells of computation. Such an independence among threads is
very much desired in using a scalable MPP system. In general, the problem granularity (operations on a grid
point/data required from adjacent grid points} must be greater than a machine § granularity (node operation
rate/node-to-node communication data rate) in order for a multicomputer to be effective.

$ 22" - Advanced Computer Architecture

b

& : Example 3.8 Problem scaling for solving Lapiace equation
on a distributed memory multicomputer
(Gordon Bell, 1992)

Laplace equations are often used to model physical structures. A 3-D Laplace equation is specified by
u u O
+ =

ox* * 9yt o9z’
We want to determine the problem scalability of the Laplace equation solver on a distributed-memory
multicomputer with a sufficiently large number of processing nodes. Based on finite-difference method,
solving Eq. 3.39 requires performing the following averaging operation iteratively across a very large grid,

as shown in Fig. 3.14:
(m) 1 I:H(m_l)

Viy= 0 (3.39)

igk = "6“ i1k TH

(m=1) (m-1) (m-—1} =1} (m=1)
ivn, ik P Uk YU g TRt ui,j.k+l:l (3.40)

where 1 <1, j, k <N and N is the number of grid points along each dimension. In total, there are N° grid points
in the problem domain 1o be evaluated during each iteration m forl<ms M

The three-dimensional domain can be partitioned into p subdomains, each having #* grid points such that
pr = N°, where p is the machine size. The computations involved in each subdomain are assigned to one
node of a multicomputer. Therefore, in each iteration, cach node is required to perform 7n° computations as
specified in Eq. 3.40.

z

(0, rn-n, rn)
» (0, rn, rn}

]
“-1--# (0, rn, ron)

(rn,rn, rn)

ﬂ{t 4 =

) d

/ (rn 0,0) (rn,rn, Q)
[N

(a) Six cube subdomains _ {b) An N x N x N grid partitioned into p subdomains,
adjacent to a cube subdomain
at the center

each being an P cube, where p = r3 = N3fn3

Fig.3.14 Partitioning of a 3D domain for solving the Laplace equation

Principles of Scalable Perfarmance — 123

Each subdomain is adjacent to six other subdomains (Fig. 3.14a). Therefore, in each iteration, each node
needs to exchange (send or receive) a total of 6% words of floating-point numbers with its neighbors. Assume
each fioating-point number is double-precision {64 bits, or 8 bytes). Each processing node has the capability
of performing 100 Mflops (or 0.01 s per floating-point operation). The internode communication latency is
assumed to be | s {or 1 megaword/s) for transferring a floating-point number.

For a balanced multicomputer, the computation time within each node and inter-node communication
latency should be equal. Thus 0.07n3,t1s equals 6x° us communication latency, implying that » has to be at
least as large as 86. A node memory of capacity 86 x 8 = 640K x 8 = 5120 Kwords = 5 megabytes is needed
to hold each subdomain of data.

On the other hand, suppose each message exchange takes 2 us (one receive and one send) per word. The
communication latency is doubled. We desire to scale up the problem size with an enlarged local memory
of 32 megabytes. The subdomain dimension size n can be extended to at most 160, because 160° x § = 32
megabytes. This size problem requires 0.3 s of computation time and 2 x 0.15 s of send and receive time.
Thus each iteration takes 0.6 (0.3 + 0.3) s, resulting in a computation rate of 50 Mflops, which is only 50%
of the peak speed of each node,

If the problem size n is further increased, the effective Mflops rate and efficiency will be improved. But
this cannot be achieved unless the memery capacity is further enlarged. For a fixed memory capacity, the
situation corresponds to the memorybound region shown in F ig. 3.6¢. Another risk of problem scaling is to
exacerbate the limited 1/O capability which is not demonstrated in this exampie.

To summarize the above studies on scalability, we realize that the machine size, problem size, and
technology scalabilities are not necessarily orthogonal to each other. They must be considered jointly, In the
next section, we will identify additional issues relating scalability studies to software compatibility, latency
tolerance, machine programmability, and cost-effectiveness.

3.4.3 Research Issues and Solutions

Toward the development of truly scalable computers, much research is being done. In this section, we briefly
identify several frontier research problems. Partial solutions to these problems will be studied in subsequent
chapters,

The Problems When a computer is scaled up to become an MPP system, the following difficulties can
arise:

* Memory-access latency becomes too long and too nonunifermly distributed to be considered tolerable.

* The IPC complexity or synchronization overhead becomes too high to be useful.

* The multicache inconsistency problem becomes out of control.

* The processor utilization rate deteriorates as the system size becomes large.

* Message passing (or page migration) becomes too time-consuming to benefit resource sharing in a
large distributed system.

* Overall system performance becomes saturated with diminishing return as system size increases
further.

Some Approaches In order to overcome the above difficulties, listed below are some approaches being
pursued by researchers:

124" il Advanced Computer Architecture

Searching for latency reducing and fast synchronization techniques.

Using weaker memory consistency models.

Developing scalable cache coherence protocols.

Realizing shared virtual memory system.

Integrating multithreaded architectures for improved processor utilization and system throughput.
Expanding software portability and standardizing parallel and distributed UNIX/LINUX systems.

Scalability analysis can be carried out either by analytical methods or through trace-driven simulation
experiments. In Chapter 9, we will study both approaches toward the development of scalable computer
architectures that match program/ algorithmic behaviors. Analytical tools include the use of Markov chains,
Petri nets, or queueing models. A number of simulation packages have already been developed at Stanford
University and at MIT.

Supporting Issues Besides the emphases of scalability on machine size, problem size and technology, we
identify below several extended areas for continued research and development:

(1)

03]

3

(4)

Software scalability: As problem size scales in proportion to the increase in machine size, the
algorithms can be optimized to match the architectural constraints. Software tools are being developed
to help programmers in mapping algorithms onto a target architecture.

A perfect match between architecture and algorithm requires matching both computational and

communication patterns through performance-tuning experiments in addition to simple numerical
analysis. Optimizing compilers and visualization tools should be designed to reveal opportunities for
algorithm/program restructuring to match with the architectural growth.
Reducing communication overhead: Scalability analysis should concern both useful computations
and available parallelism in programs. The most difficult part of the analysis is to estimate the
communication overhead accurately. Excessive communication overhead, such as the time required to
synchronize a large number of processors, wastes system resources. This overhead grows rapidly as
machine size and problem size increase.

Furthermore, the run time conditions are often difficult to capture. How to reduce the growth of
communication overhead and how to tolerate the growth of memory-access latency in very large
systems are still wide-open research problems.

Enhancing programmability: The computing community generally agrees that multicomputers are more
scalable; multiprocessors may be more easily programmed but are less scalable than multicomputers.
It is the centralized-memory versus distributed private-memory organization that makes the difference.
In the ideal case, we want to build machines which will retain the advantages of both architectures.
This implies a syster with shared distributed memory and simplified message communication among
processor nodes. Hsterogencous programming paradigms are needed for future systems.

Providing longevity and generality: Other scalability issues include fomgevity, which requires an
architecture with sufficiently large address space, and generality, which supports a wide variety of
languages and binary migration of software.

Performance, scalability, programmability, and generality will be studied throughout the book for general-
purpose parallel processing applications, unless otherwise noted.

Princibles of Scaloble Performance '“- 128

Wid% npid advancm in teehnology, scalabdlty becomes an important criterion foranymodem computer
- system—and: especially so: for 2 parallel processing -system. However, system scalability can only be
- defined in terms. of system performance, and. therefore: issues of scalability and system performance are

very closely interrelated. In this chapter; we Kave studied some basic issues related to d\e Mﬂmnce

and scalability of parallel processing systems. -

The main performance metric considered mdwemwontfmeofapara#elpmmwhiohhma
specific parallefism profile.As a program executes, the degree of parallelism in it varies with time, and
therefore we can calculate the average degree of parallelism in the program. The parallelism profile also
allows us to estimate the speedup achievable on the system as the number of processors is increased.

- Apart from speedup, we also defined system efficiency and system utilization as asymptoticfunctions
of the number of processors, Ommn processor system, efficiency is defined asthesp&edupaciﬁmd
divided by n (which is the ideal casespeedup} System utilization, on the other hand, indicates:the fraction
of processor cycles whu:h was actually utilized durmg program execution on the.n processor system.

Benchmark programs are. very useful tools i measuring the performance of corriptiter systems. We
looked at certain well-known benchmark programs, aithough it is also true that no twa applications are. -
identical and that therefore, inthe ﬁnai analysis, application specific benchmafk progmms are more useiul.

We took a brief logk at so-called ‘grand challenge’ applications of high performance computer systems;
these are app!icauons which are likely to have major impact in science and technology. Massively paraliel.
:processang (MPP) systems___are increasingly (
scalability are important criteria for all ati : Y S e :

We then looked at some speedup performance laws govemmg paraﬁe! app!icamm.m@ﬂs Iaw :
states. inesse‘ncedm.forapmblem efagwmﬁxed size, uﬂ)enumberdpmmmmmm

' speedup achievable is fimited. by-the program fraction which must necessarily run as a sequential program,
i.e.on one processor: Gustafson's law, on the' other hand, studies also the effectoflmrmm the problem
size as' the system size Is increased, resulting in the so-called fixed time speedup model: The Ehil"d model
studied was the memory-bounded speedup modal proposed by Sun andNi.

~The specific metrics which' affect the scaiabiﬁtyofacompucersym i?oraﬁwen appbmmn are—
machine size in number of processors, processor clock rate, problem size, processor time consumed, /O
requirement, memory reqisirement, communication requirement, system cost, and programming cost of
the appﬁcaﬂén Open resaarch :s?.ues related to scalability in massively parallel. Systems were reviewed.

& Exercises

Problem 3.1 Consider the parallel execution for synchronization ameng the four program parts,
of the same program in Problem 1.4 on a four- 50000 extra instructions are added to each divided
processor system with shared memory. The program program part.

can be partitioned into four equal parts for balanced Assume the same instruction mix as in Problem 1.4
execution by the four processors. Due to the need for each divided program part.

124" -

The CPI for the memory reference (with cache
miss) instructions has been increased from 8 to 12
cycles due to contentions. The CPls for the remaining
instruction types do not change.

(2) Repeat part (a} in Problem 1.4 when the
program is executed on the four-processor
system.

(b) Repeat part (b) in Problem 1.4 when the
program is executed on the four-processor
system,

{(c) Caiculate the speedup factor of the four-
processor system over the uniprocessor
system in Problem 1.4 under the respective
trace statistics.

Calculate the efficiency of the four-processor
system by comparing the speedup factor in
part (c) with the ideal case.

(d)

Problem 3.2 A uniprocessor computer can
operate in either scalar or vector mode. In vector
mode, computations can be performed nine times
faster than in scalar mode. A certain benchmark
program took time T to run on this computer.
Further, it was found that 25% of T was attributed to
the vector mode. In the remaining time, the machine
operated in the scalar mode.

(a) Calculate the effective speedup under the
above condition as compared with the
condition when the vector mode is not used
at all. Also calculate ¢, the percentage of
code that has been vectorized in the above
program.

{(b) Suppose we double the speed ratio between
the vector mode and the scalar mode by
hardware improvements. Calculate the
effective speedup that can be achieved.

(¢) Suppose the same speedup obtained in part (b)
must be obtained by compiler improvements
instead of hardware improvements. What
would be the new vectorization ratio o
that should be supported by the vectorizing
compiler for the same benchmark program?

Advenced Computer Architecture

Problem 3.3 Let o be the percentage of a
program code which can be executed simultaneously
by n processors in a computer system.Assume that
the remaining code must be executed sequentially by
a single processor. Each processor has an execution
rate of x MIPS, and ali the processors are assumed
equally capable.

(a) Derive an expression for the effective MIPS
rate when using the system for exclusive
execution of this program, in terms of the
parameters n, o, and x,

{b) Ifn=16and x =400 MIPS,determine the value
of ot which will yield a system performance of
4000 MiIPs.

Problem 3.4 Consider a computer which can
execute a program in two operational modes: regular
mode versus enhanced mode, with a probability
distribution of {c, 1 — a}, respectively.

(a) if axvaries betweenaandband0sa<b<1,
derive an expression for the average speedup
factor using the harmonic mean concept.

{b)} Calculate the speedup factor when a — 0 and
b—1.

Problem 3.5 Consider the use of afour-processor,
shared-memory computer for the execution of a
program mix. The multiprocessor can be used in
four execution modes corresponding to the active
use of one, two, three, and four processors. Assume
that each processor has a peak execution rate of
500 MIPS.

Let [be the percentage of time that i processors
will be used in the above program execution and
fi + f + f + f4 = 1.You can assume the execution
rates Ry, Ry R; and R, corresponding to the
distribution (fi, 5, f3. fa), respectively.

(a) Derive an expressicn to show the harmonic
mean execution rate R of the multiprocessor
in terms of fiand R for i = 1, 2, 3, 4. Also
show an expression for the harmonic mean
execution time T in terms of R.

Principles of Scalable Performance

(b) What would be the value of the harmonic
mean execution time T of the above program
mix given f; = 0.4,£,=0.3,f=0.2,f, = 0.1 and
Ry =400 MIPS, R; = 800 MIPS, R; = 1100 MIPS,
Ry = 1500 MIPS? Explain the possible causes
of observed R, values in the above program
execution.

{¢) Suppose an intelligent compiler is used to
enhance the degree of parallelization in the
above program mix with a new distribution
fi=01, =02, =03, f; = 0.4.What would
be the harmonic mean execution time of the
same program under the same assumption on

{R} as in part (b)?

Problem 3.6 Explain the applicability and
the restrictions involved in using Amdahl's law,
Gustafson’s law, and Sun and Ni's faw to estimate
the speedup performance of an n-processor system
compared with that of a single-processor system.
Ignore all communication overheads.

Problem 3.7 The following Fortran program is
to be executed on a uniprocessor, and a parallel
version is to be executed on a shared-memory
multiprocessor.

Ll: Do 10 I =1, 1024

L2: SUM{I) = 0

L3: bo 20 J =1, 1

L4: 20 SUM (I} = SUM (I) + I

L3: 10 Continue

Suppose statements 2 and 4 each take two
machine cycle times, including all CPU and memory-
access activities. Ignore the overhead caused by the
software foop control (statements L1, L3, and L5)
and all other system overhead and resource con-
flicts.

(a) What is the total execution time of the

program on a uniprocessor?

(b) Divide the outer loop iterations among
32 processors with prescheduling as follows:
Processor 1 executes the first 32 iterations
(! = 1 to 32), processor 2 executes the

. 127

next 32 iterations (/ = 33 to é4), and so on.
What are the execution time and speedup
factors compared with part (a}? {Note that
the computational workload, dictated by the
J-loop, is unbalanced among the processors.)

(¢) Modify the given program to facilitate
a balanced parallel execution of all the
computational workload over 32 processors.
By a balanced load, we mean an equal number
of additions assigned to each processor with
respect to both loops.

(d) Whatis the minimum execution time resulting
from the balanced paralle! execution on 32
processors? What is the new speedup over
the uniprocessor?

Problem 3.8 Consider the multiplications of
two n X n matrices A = (g;) and B = (b)) on a scalar
uniprocessor and on a multiprocessor, respectively.
The matrix elements are floating-point numbers,
initially stored in the main memory in row-major
order. The resulting product matrix € = {c;) where
C = A x B, should be stored back to memory in
contiguous locations.

Assume a 2-address instruction format and
an instruction set of your choice. Each load/store
instruction takes, on the average, 4 cycles to complete.
All ALU operations must be done sequentially on
the processor with 2 cycles if no memory reference
is required in the instruction. Otherwise, 4 cycles
are added for each memory reference to fetch an
operand. Branch-type instructions require, on the
average, 2 cycles.

(2) Write a minimal-length assembly-language
program to perform the matrix multiplication
on a scalar processor with a load-store
architecture and floating-peint hardware,

(b) Calculate the total instruction count, the
total number of cycles needed for the
program execution, and the average cycles
per instruction (CPI).

(c) What is the MIPS rate of this scalar machine,
if the processor is driven by a 400-MHz clock?

1 26" W

(d) Suggest a partition of the above program to
execute the divided program parts on an
N-processor shared-memory system with
minimum time. Assume n = 1000N. Estimate
the potential speedup of the multiprocessor
over the uniprocessor,assuming the same type
of processors are used in both systems. Ignore
the memory-access conflicts, synchronization
and other overheads.

(e) Sketch a scheme to perform distributed
matrix computations with distributed
data sets on an N-node multicomputer
with distributed memory. Each node has a
computer equivalent to the scalar processor
used in part {a).

() Specify the message-passing operations
required in part (e). Suppose that, on the
average, each message passing requires 100
processor cycles to complete. Estimate the
total execution time ‘on the muiticomputer
for the distributed matrix multplication.
Make appropriate assumptions if needed in
your timing analysis.

Problem 3.9 Consider the interleaved execution
of the four programs in Problem 1.6 on each of
the three machines. Each program is executed in a
particular mode with the measured MIPS rating.

{a) Determine the arithmetic mean execution
time per instruction for each machine
executing the combined workload, assuming
equal weights for the four programs.

(b) Determine the harmonic mean MIPS rate of
each machine.

(c) Rank the machines based on the harmonic
mean performance. Compare this ranking
with that obtained in Problem 1.6.

Problem 3.10 Answer or prove the following
statements related to speedup performance law:
(a) Derive the fixed-memory speedup expression
$* in Eq. 3.33 under reasonable assumptions.
(b) Derive Amdahl’s law (S, in Eq. 3.14) as a
special case of the S} expression.
(c) Derive Gustafson’s law (S;, in Eq. 3.31) as a

Advanced Computer Architecture

special case of the 5} expression.

(d) Prove the relation $% 2§/, 2 §, for solving the
same problem on the same machine under
different assumptions.

Problem 3.11 Prove the following relations
among the speedup S(n), efficiency E(n), utilization
U(n), redundancy R(n), and quality Q(n) of a parallel
computation, based on the definitions given by Lee
(1980):

{a) Prove 1/n < E(n} < U(n) < 1, where n is the
number of processors used in the parallel
computation.

(b) Prove 1<R(n) < 1/E(n) <n.

(c) Prove the expression for Q(n) in Eq. 3.19.

(d) Verify the above relations using
hypothetical workload in Example 3.3.

the

Problem 3.12 Repeat Example 3.7 for sorting s
numbers on five different n-processor machines using
the linear array, 2D-mesh, 3D-mesh, hypercube, and
Omega network as interprocessor communication
architectures, respectively.
(a) Show the scalability of the five architectures
as compared with the EREW-PRAM model.
(b) Compare the results obtained in part (a) with
those in Example 3.7. Based on these two
benchmark results, rank the relative scalability
of the five architectures. Can the results be
generalized to the performance of other
algorithms!?

Problem 3.13 Consider the execution of two
benchmark programs. The performance of three
computers running these two benchmarks are given
below:

Benchmark | Millions | Computer | Computer| Computer
of i 2 3

Sfoating- | T, (sec) | Tisec) | T;{sec)
Problem 1 |~ 1005 . 1 1 20
Problem 2 180 - 1000 160 - 20
Total time B 1000 | 110 40

Principles of Scalable Performance

(a) Calculate R, and R, for each computer under
the equal-weight assumption f; = f, = 0.5.

(b) When benchmark 1 has a constant R; =
10 Mflops performance across the three
computers, plot R, and R, as a function of Ry,
which varies from 1 to 100 Mflops under the
assumption f; =0.8and f = 0.2,

. (¢} Repeat part (b) for the case f; = 0.2 and
f,=0.8.

(d) From the above performance results under
different conditions, can you draw a conclusion
regarding the relative performance of the
three machines?

Problem 3.14 In Example 3.5, four parallel
algorithms are mentioned for multiplication of s x s
matrices. After reading the original papers describing
these algorithms, prove the following communication
overheads on the target machine architectures:

(a) Prove that h(s, n) = O(nlog n +sz\/;) when
mapping the Fox-Otto-Hey algorithm on a

\/; X ‘/; toriis.

(b) Prove that h(s, n) = O(n*” + nlogn + szn“)
when mapping Berntsen’s algorithm on
a hypercube with n = 2% nodes, where

k<4 logs.

" |29

(c) Prove that h(s, n) = O(nlogn + s% when
mapping the Dekel-Nassimi-Sahni algorithm
on a hypercube with n = 5% = 2% nodes.

Problem 3.15 Xian-He Sun (1992) has
introduced an isospeed concept for scalability
analysis. The concept is to maintain a fixed speed for
each processor while increasing the problem size.
Let W and W’ be two workloads corresponding to
two problem sizes. Let N and N’ be two machine
sizes (in terms of the number of processors). Let Ty,
and Ty be the parallel execution times using N and
N’ processors, respectively.

The isospeed is achieved when W/(NT,) = W'/
(N'Tw). The isoefficiency concept defined by Kumar
and Rao (1987) is achieved by maintaining a fixed
efficiency through Sy(W)/IN = Sy (W)IN’, where
Sn{W) and Sy-(W') are the corresponding speedup
factors.

Prove that the two concepts are indeed equivalent
if (i} the speedup factors are defined as the ratio of
parallel speed Ry, to sequential speed Ry (rather than
as the ratio of sequential execution time to parallel
execution time), and (i) Ri(W) = Ry(W’). In other
words, isoefficiency is identical to isospeed when
the sequential speed is fixed as the problem size is
increased.

